How to levitate glowing nanodiamonds in a vacuum with lasers

Nanodiomaond containing hundreds of nitrogen vacancies glows while levitated Nanodiomaond containing hundreds of nitrogen vacancies glows while levitated. Photo credit: J. Adam Fenster, University of Rochester

Researchers have, for the first time, levitated individual nanodiamonds in vacuum. The research team is led by Nick Vamivakas at the University of Rochester who thinks their work will make extremely sensitive instruments for sensing tiny forces and torques possible, as well as a way to physically create larger-scale quantum systems known as macroscopic Schrödinger Cat states.

While other researchers have trapped other types of nanoparticles in vacuum, those were not optically active. The nanodiamonds, on the other hand, can contain nitrogen-vacancy (NV) centers that emit light and also have a spin quantum number of one. In the paper, published in Nature Photonics, the researchers from Rochester’s Institute of Optics explain this is the first step towards creating a “hybrid quantum system.” Their system combines the mechanical motion of the nanodiamond with the internal spin of the vacancy and its optical properties to make it particularly promising for a number of applications.

In a previous paper, the researchers had shown that nanodiamonds could be levitated in air using a trapping laser. The new paper now shows this can be done in vacuum, which they say is “a critical advance over previous nanodiamond optical tweezer experiments performed in liquids or at atmospheric pressure.”

Nanodiamonds trapped at atmospheric pressure are continuously agitated by collisions with the air molecules around them. Trapping the diamonds in vacuum removes the effect of all these air molecules. “This allows us to exert mechanical control over them,” said Levi Neukirch, lead author of the paper and a Ph.D. student in Vamivakas’ group at Rochester. “They turn into little harmonic oscillators.”

“We can measure the position of the diamond in 3D and we create a feedback signal based on the position and velocity of the nanodiamond,” said Neukirch. “This lets us actively damp its motion.”

Neukirch said that this is done by changing the trapping potential that the diamond sees. The trapping potential can be illustrated by imagining the diamond sitting at the bottom of a valley. If the diamond moves away from the bottom of the valley, it effectively moves uphill and eventually rolls back to the bottom. The feedback mechanism the researchers have created changes the shape of the optical potential well, so that the hill is steep when the diamond climbs it, but gradual when it rolls back down. Eventually the diamond would just oscillate a tiny amount at the bottom of the valley. This, Neukirch stated, is their long-term goal: to damp the diamond’s motion until it is in the ground state of the system, which would make the system behave as a quantum mechanical oscillator.

Find the complete article at:

To find out more about nanotechnology with
Thin Film Deposition Systems, please contact
Our team of Vacuum experts
Free call AUS. 1800 251 799 and NZ  0800 651 700

Photo Gallery Slideshow

Leave a comment

Your email address will not be published.